Inference Using Simulated Neural Moments

نویسندگان

چکیده

This paper studies method of simulated moments (MSM) estimators that are implemented using Bayesian methods, specifically Markov chain Monte Carlo (MCMC). Motivation and theory for the methods is provided by Chernozhukov Hong (2003). The shows, experimentally, confidence intervals these may have coverage which far from nominal level, a result has parallels in literature overidentified GMM estimators. A neural network be used to reduce dimension an initial set minimum number maintains identification, as Creel (2017). When MSM-MCMC estimation inference based on such moments, continuously updating criteria function, statistically correct all cases studied. illustrated application several test models, including small DSGE model, jump-diffusion model returns S&P 500 index.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Parsimony Phylogenetic Inference Using Simulated Annealing

The Maximum Parsimony (MP) problem aims at reconstructing a phylogenetic tree from DNA sequences while minimizing the total number of genetic transformations. In this paper we propose a carefully devised simulated annealing implementation, called SAMPARS (Simulated Annealing for Maximum PARSimony), for finding near-optimal solutions for the MP problem. Different possibilities for its key compon...

متن کامل

Estimation of Dynamic Latent Variable Models Using Simulated Nonparametric Moments

Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is...

متن کامل

Geoelectrical inference of mass transfer parameters using temporal moments

[1] We present an approach to infer mass transfer parameters based on (1) an analytical model that relates the temporal moments of mobile and bulk concentration and (2) a bicontinuum modification to Archie’s law. Whereas conventional geochemical measurements preferentially sample from the mobile domain, electrical resistivity tomography (ERT) is sensitive to bulk electrical conductivity and, th...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Semi-supervised network inference using simulated gene expression dynamics.

Motivation Inferring the structure of gene regulatory networks from high-throughput datasets remains an important and unsolved problem. Current methods are hampered by problems such as noise, low sample size, and incomplete characterizations of regulatory dynamics, leading to networks with missing and anomalous links. Integration of prior network information (e.g. from pathway databases) has th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Econometrics

سال: 2021

ISSN: ['2225-1146']

DOI: https://doi.org/10.3390/econometrics9040035